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Experimental study of the oscillations 
of a rotating drop 
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Two- and three-lobed oscillations of a rotating liquid drop immersed in an immiscible 
fluid of comparable density and the same angular velocity were studied experimen- 
tally. Using acoustically suspended drops, it has been found that the relative change 
in the resonance frequencies of the axisymmetric drop-shape oscillations A o l / w p )  is 
proportional to the square of the normalized angular speed (52/wf0))2 when wl > 252. 
This is in agreement with a recent analytical study of the same problem. Some 
preliminary results regarding the effect of rotation on the free-decay rate of the 
two-lobed oscillations are also presented. 

1. Introduction 
In  spite of being one of the basic problems in fluid mechanics, the dynamics of the 

oscillations of rotating liquid drops have generated little interest except as simple 
models for systems much larger than drops (stars) or much smaller (atomic nuclei). 
The advent of fully equipped, manned scientific laboratories placed in the greatly 
reduced gravity environment of Earth-orbit has, however, made experimentally 
available an unconfined liquid drop held together only by surface tension. Both the 
oscillatory and rotational dynamics of such unconfined liquid drops will be investigated 
in a forthcoming Spacelab experiment, using drops that are acoustically positioned 
and manipulated in air. It was in preparation for this space experiment that the 
present Earthbound study using immiscible liquid systems was initiated. 

Ground-based experiments dealing only with rotation (Wang et al. 1982) and 
oscillation (Trinh, Zwern & Wang 1982, and Trinh & Wang 1982) have already been 
carried out. This paper reports the outcome of a series of measurements for 
the vibrational parameters of rotating drops. The quantitative determination 
of the effects of rotation upon both the resonance frequencies and the decay rates of 
the first modes of the drop-shape oscillations is of principal interest. Parts of the 
experimental results are favourably compared with the predictions of a recent 
analytical study of the same problem (Busse 1984). 

A summary of the relevant theoretical results is presented in $2. A cursory 
description of the experimental technique and the apparatus is given in $3. 
Section 4 closes the paper with a description and discussion of the experimental 
observations. 

2. Theoretical background 
Busse (1984) investigated the effects of rotation on the frequencies of the shape 

oscillations of a drop immersed in a fluid of the same or different density, moving 
at the same fixed angular velocity. He considered the linear, incompressible, inviscid, 
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and time-dependent theory of rotating flows. Additional assumptions were that the 
rotation-induced shape deformation remained small and axisymmetric, that the 
amplitude of the oscillations were small, and that no inertial waves were excited in 
the host fluid. This approach yielded analytical expressions for the effect of rotation 
on the resonance frequencies of both the axisymmetric and non-axisymmetric modes 
of shape oscillation. The results obtained for axisymmetric oscillations are of 
particular interest in this paper and can be written as 

1 + Pi 
A = 2 [  1(2+2) (21- 1) (1'- 1) (2Z+3) ' 

Z4 + 2 k  - 41' - 51 + 6 Z2(1 + 4) PO + (1 + 1) 
(1+2)  ( Z -  1) 4[p'(Z+ l)+ZpO] 

,,i 
- 

6(21- 1) (21+3) [ B =  

1(Z+ 1) (Z- 1) (1+2) 
" ( 0 )  = 

1 (4) 

where o is the resonance frequency, ro is the equivalent spherical radius of the drop, 
52 is the angular frequency of rotation, T is the interfacial tension, and p is the fluid 
density. The subscript 1 denotes the mode of oscillation, and the superscripts ( 0 ) ,  i ,  
and o refer to the state of non-rotation, the inside (drop) fluid, and the outside fluid, 
respectively . 

The characteristics of the governing equation from which (1) was obtained change 
from elliptic to hyperbolic at w1 = 252. Equation (1) is valid only for w1 > 252. For 
w1 < 252, inertial waves could be excited in the outside fluid medium (Greenspan 
1969). Equation (2) expresses the effects owing to the Coriolis acceleration which 
provides an effective restoring force even when pi = PO. The terms in (3) quantify the 
effects of the centrifugal force arising from the density difference. The dependence 
of the normalized shift in resonance frequency is evident for the interfacial tension 
(a T1), the volume (a rg) and the angular velocity (a Q2). For pi > po, Awl always 
remains positive ; but for pi < PO, Awl could become negative depending on the values 
of pi and 1. The expression given in (4) for the resonance frequency of a non-rotating 
drop was first obtained by Lamb (1932). 

3. Experimental apparatus and technique 
3.1. The apparatus 

An acoustic-levitation technique, already described in a previous study (Trinh & 
Wang 1982), has bccn modified to incorporate a rotational capability. The acoustic- 
radiation forces generated in a liquid-filled rcsonant cavity were used to both position 
and deform the liquid drops. In  this particular case, the cell was cylindrical, with the 
vertical axis coinciding with the rotation axis. The liquid cell was placed on a 
turntable and the whole apparatus was rotated while the drops were levitated or 
trapped at the rotation axis. Measurements were taken after reaching the steady-state 
rotation phase when the drop angular velocity matched that of the host liquid and 
the solid cylindrical container. 

Figure 1 is a schematic representation of the experimental system. As mentioned 
above, the heart of the apparatus was a transparent lucitc cylindrical cell ( r  = 4.7 cm, 
h = 7.4 em), fitted on a precision-machined turntable, and directly coupled to a 
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FIGURE 1.  Schematic of the experimental set-up. 1 ,  Cylindrical acoustic cell; 2, aluminium block 
attached to a piezoelectric transducer; 3, turntable; 4, slip rings for electrical contact; 5, belt drive ; 
6, light encoder; 7,  drive motor; 8, support frame; PA, power amplifier, and S, summer. 

piezoelectric transducer. The liquid-filled chamber was closed by a rigid top, firmly 
attached to the cylinder after all visible bubbles were removed. I n  order to avoid 
cavitation, the host liquid (distilled water) was thoroughly outgassed and freed of 
suspended solid impurities. The angular speed was measured with the light encoder 
fixed to the rotating shaft. 

The two ultrasonic standing waves used to trap and to distort the suspended drop 
had frequencies of 42 and 92 kHz, respectively. For the largest drop size used in this 
experiment, the Kr,  values were 0.92 and 2.01, where ro is the drop radius and 
K = 2x/h, A being the acoustic wavelength of a plane wave in the host fluid. The 
Kr, parameter is a measure of acoustic radiation coupling to the static shape of the 
drop. 

Because of the additional complications introduced by the cylindrical geometry 
and rotational dynamics, previously developed optical measurement techniques 
could not be used. Consequently, the data gathering was performed visually, as well 
as through video and moderately high-speed cin6film records. 

3.2. The method 

The drops were driven into oscillations through modulation of the acoustic forces 
deforming the shape of the fluid sphere. The voltage imposed across the transducer 
was approximately expressed by 

V = V, sin (27tfp t )  + Vc sin (Znf, t )  cos (2njm t ) ,  ( 5 )  

where V, drove the standing-wave mode used to  position the drop ( f p  = 42 kHz), V, 
excited the mode used to induce drop-shape oscillations (f, = 92 kHz), and f ,  was 
the low modulation frequency. 

The shape oscillations of the liquid drop were closely observed using a video system. 
The resonance frequencies of the drop corresponding to the 1 = 2 and 1 = 3 modes 
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were determined by slowly sweeping the low-frequency signal (f,), and by locating 
the frequency of maximum response. 

The resonant-mode identification was made through stroboscopic illumination, 
thus allowing an apparent slowing down of the oscillations. The shapes of drops 
oscillating in the I = 2 and I = 3 modes are illustrated in figure 2. 

According to a linear theory (Marston 1980), the response of a non-rotating drop 
to the acoustic fields may be approximated by an expansion 

where 00 

r(8,t)  = ro+x(8,t) ,  (6) 

(7) 

and is the lth component of the static distortion due to the positioning acoustic 
field, is the static distortion due to the deforming field, and x1 expresses the 
oscillating part due to the deforming field. For a rotating drop one may assume that 
x(8 ,  t )  again denoted the acoustically induced deformation. However, the effects of 
rotation on the equilibrium shape should be included by replacing ro in (6) by an 
appropriate expression r(8) .  

x ( e , t )  = x [x;y+x;tat+xl c o s ( 2 7 t f , t + q ) 1 ~ ~  (Case) 
1-2 

We assumed that, when f, = if2, 
x2 >> %yt B x1*2, (8) 

and that, when f, = if3, 
x3 >> x;yt B (9) 

The value of x;tat was not negligible, as in the earlier experimental work (Trinh et 
al. 1982). A less sensitive detection technique, used in the present study, required 
an increase in the magnitude of x l ,  leading to an increased magnitude of $tat. 

Moreover, as the angular speed 52 became significant, an increase in x1 was necessary 
to excite the oscillations. 

The decay process was studied by first driving the drops into oscillation at the 
fundamental resonance frequency (f, = if2), and then allowing them to decay freely. 
The oscillatory dissipation was recorded on high-speed cinkfilm, and the decay 
constant was determined from these records. Using the same notation, the free-decay 
process of a non-rotating drop may be approximately described by 

x(8, t > 0) = X [@tat cos (2xf i t + @i) exp (b; t )  +xl cos (2xf ; t + @;) exp (b; t ) ]  Pl C O S ~ ) ,  
a, 

(10) 
1-2 

where the prime and doubled prime refer to the decay of the original static and 
oscillatory distortions respectively, and b; and b; are the decay constants associated 
with xftat and xl respectively. Even if we assume a similar expression for the free decay 
of a rotating drop, a complicated decay process should be anticipated since .pat was 
not negligible in the present study. 

4. Experimental results and observations 
4.1. Resonance frequencies determination 

Four different drop volumes, 0.55 ml (r ,  = 0.51 cm), 0.40 ml (r ,  = 0.46 cm), 0.30 ml 
(r, = 0.41 cm), and 0.20 ml (r ,  = 0.36 cm), were chosen for the measurement of the 
resonance frequencies. The density difference between the drop and the host liquids 
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FIGURE 4. The relative shift in the resonance frequency as a function of the square of the normalized 
rotation rate for 1 = 3 and (a) pi x po and ( b )  pi > po. The solid lines were obtained from (11) .  

was varied from - &+ 6 yo of the host density. The drop liquid was a mixture of 
low-viscosity silicone oil (v < 10 cSt) and carbon tetrachloride in varying concentra- 
tions in order to adjust the density. 

Oscillation amplitudes up to 20 % drop radius were used for the measurements and 
were determined at  the rotation axis in the vertical direction where optical distortion 
was at a minimum. The typical uncertainty in the frequency measurements was 
& 0.1 Hz, or about 2 Yo. The angular speed was observed to remain within f 0.05 rev/s 
of the set value. 
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FIQURE 5. Observed multiplicity in the resonance frequency at large rotation rates ( I  = 2). 

Generally, a sequence of measurements was taken by alternating readings in a 
non-rotating state with those at a determined rotation velocity in order to monitor 
any time dependence of the interfacial tension. Such changes may be brought about 
by the slow rise in temperature ( -  4 "C) within the cell due to acoustic heating taking 
place throughout the duration of a set of measurements (typical experiment 
duration was 2 h). 

To eliminate the problem arising from an inconstant interfacial tension, i t  was 
decided to plot the data by using a reduced variable for the rotation velocity. The 
non-dimensional variable chosen was Pl = (B/w~O))~. Using (4) to replace T in ( l ) ,  one 
gets the following equation for the relative shift in the resonance frequencies: 

In  practice, wlO) was obtained experimentally by measuring the resonance frequencies 
of non-rotating drops. This is allowable because of the low viscosity of the fluids used 
in the experiments. 

Figure 3 (a)-(c) display some of the experimental results for the fundamental mode 
and for pi < po, pi w po, and pi > po, respectively. The experimental uncertainty was 
within the size of the symbols used in these figures. Figure 4 (a) and ( b )  display data 
for the 1 = 3 mode and for pi 1: po and pi > po, respectively. The experimental results 
for the pi > po case do not extend to large values of the normalized angular speed 
owing to  wobbling induced by a less-than-perfect alignment of the cylinder, drop, 
and rotation axes. The solid lines shown in these figures were obtained from (11). 

The slopes of the solid lines in figure 3 are about 0.85 and those in figure 4 about 
0.93. They reveal that  the effect of rotation was felt more strongly in the three-lobed 
than in the two-lobed oscillations. They also show that, in the range of density 
differences studied (i.e. -8  to  + 6  yo of the host-liquid density), the resonance- 
frequency shift was not significantly affected by the density of the drop. 
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FIQURE 6. The decay process of a 0.20 ml drop at 5 rev/s (I = 2). 

A close agreement of the data with the theoretical predictions verifies the linear 
dependence of the relative frequency shift on the square of the normalized angular 
speed. The oscillation amplitudes used in the experiments were not infinitesimal as 
was assumed in the theory. The resonance frequency is known to decrease with an 
increasing oscillation amplitude (Trinh & Wang 1982). Such a decrease, owing to finite 
amplitude excited in the experiments, is estimated to be about 3-5 % . 

An intriguing experimental observation was made as the angular speed of rotation 
was increased, i.e. for (52/wfo))2 > 1.0. Evidence was found for the existence of more 
than one resonance frequency for the I = 2 mode for a given rotational velocity. Those 
results are displayed in figure 5.  Stroboscopic illumination revealed that they were 
all oscillations of the oblate-prolate type. One must note that this rotational velocity 
limit corresponds to w1 f 252, where the assumptions of the linear theory discussed 
above break down, and inertial waves could be excited in the chamber. The present 
experimental apparatus, however, does not readily lend itself to the observation of 
such wave phenomena. 

4.2. Decay-constant measurement 
The damping-constant measurements were carried out for the 1 = 2 mode by 
recording the decay process of an initially oscillating drop on high-speed cinkfilm, and 
by extracting the relevant time constant from a semi-logarithmic plot of amplitude 
versus time. The use of this technique implies an exponential-decay process with a 
single-time constant, and has proved reliable in the study of non-rotating drops. In 
the case of rotating drops, this method only yielded damping-constant values for 
small drop volumes ( V  < 0.20 ml) a t  low rotation velocities. Figure 6 reproduces 
experimental data obtained for a 0.20 ml drop rotating at 5 rev/s, initially driven 
into oscillation at  a resonance frequency of 11.2 Hz. Figure 7 displays measured 
damping constants bi at various rotation velocities for the same 0.20 ml drop. A slight 
increasing trend may readily be observed. 
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For larger drops ( V 2 0.40 ml), the observed decay process is no longer characterized 
by a simple exponential curve for rotation rates 8 > 3 rev/s. Typical results are 
reproduced in figure 8 for the free decay of a 0.40 ml drop a t  3 and 7 rev/s. The data 
obtained a t  the higher rotation rate reflect a sharp initial decrease in the amplitude 
during the first cycle, and a subsequently significantly slower decay process. A check 
on the behaviour of the 0.20ml drop showed a similar trend, but a t  9rev/s 
(f, = 16 Hz).  As discussed before, this complex decay process could be owing to the 
non-negligible static distortion xftat (see (10)). One might again note that the onset 
of this discontinuity roughly coincides with the reaching of the limit w1 z 2 8 .  

4.3. Discussion and conclusion 
Satisfactory agreement was obtained between the experimental data and the 
theoretical predictions for wl > 2Q. The relative shift in resonance frequency Awl/wjo) 
was found to be linearly dependent on the square of the relative rotation velocity 
( 8 / w f 0 ) ) 2  for a given set of densities pi and po. Observed deviations a t  higher rotation 
rates and the multiplicity of the resonant modes could not be explained by the 
available theory. 

The preliminary results of decay-constant measurements indicate an increase in 
the free-decay rate for small values of 8 and a more complex decay process for large 
values of f2. The interpretation of the data remains ambiguous, however, owing to 
the undetermined role of the acoustic-radiation pressure coupling to the static shape 
of the drop. Such a coupling would become more significant as the Kr,  parameter 
increases, i.e. when the drop volume becomes larger. 

Conjectures about the possible influence of inertial waves on the resonance 
frequencies and the decay rates for wl < 2Q could be made, though the physical 

FIMJRE 7. The damping constant as a function of the rotation rate for a 0.20 ml drop ( I  = 2 ) .  
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FIGIJRE 8. The decay process of a 0.40 ml drop at 3 and 7 rev/s (I = 2). 

mechanism through which these waves might couple to the drop-shape oscillations 
is not clear. Although of fundamental interest, the treatment of this phenomenon is 
beyond the scope of the present work. The result of this work, however, provides 
ample motivation for a detailed experimental study of the interaction of inertial 
waves with drop-shape oscillations, as well as a theoretical investigation on the decay 
process of rotating and oscillating liquid drops. 
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